One More, One Less	When we add one, we get the next counting number. When we subtract one, we get the previous counting number (e.g. $5-1=4$).	Number Neighbours: Spot the Difference	Adjacent numbers have a difference of 1. Adjacent odds and evens have a difference of 2. Spot number neighbours (adjacent, odds or evens) to solve subtractions of adjacent numbers (e.g. $5-4=1$), of adjacent odds (e.g. 9-7=2) or adjacent evens (e.g. 6-4 = 2)
Two More, Two Less: Think Odds and Evens	If we add two to a number, we go from odd to next odd or even to next even. If we subtract two from a number, we go from odd to previous odd or even to previous even.	7 Tree and 9 Square	Use these visual images to remember addition and subtractions fact families that children can find tricky. For example, visualising the 7 tree helps remember that $7-3=4$. Visualising the 9 square helps remember that $3+6=9$.
Number 10 Fact Families	Go beyond just recalling the pairs of numbers that add to 10 . Make sure that we can also spot additions and subtractions which we can use number bonds to 10 to solve.	Ten and A Bit - \square 0	The numbers 11-20 are made up of 'Ten and a Bit'. Recognising and understanding the 'Ten and a Bit' structure of these numbers enables addition and subtraction facts involving their constituent parts (e.g. 3 $+10=13,17-7=10,12-10=2)$
Five and A Bit	The numbers 6, 7, 8 and 9 are made up of 'five and a bit'. This can be shown on hands, and supports decomposition of these numbers into their five and a bit parts (e.g. $5+3=8,9-5=4$).	Make Ten and Then...	Additions which cross the 10 boundary can be calculated by 'Making Ten' first, and then adding on the remaining amount (e.g. $8+6$ can be calculated by thinking ' $8+2=10$ and 4 more makes 14 '). The same strategy can be applied to subtractions through 10.
Know about 0	When we add 0 to or subtract 0 from another number, the total remains the same. If we subtract a number from itself, the difference is 0 .	Adjust It	Any addition and subtraction can be calculated by adjusting from a fact you know already, (e.g. $6+9$ is one less than $6+10$).
Doubles and Near Doubles	Memorise doubles of numbers to 10 , using a visual approach. Then use these known double facts to calculate near doubles and hidden doubles. Once we know $6+6=12$ then $6+7$ and $5+7$ is easy.	Swap It	When the order of two numbers being added (addends) is exchanged the total remains the same. E.g. $1+8=8$ +1 . Sometimes reversing the order of the two addends makes addition easier to think about conceptually.

